Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260608

RESUMO

KCNQ2 variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and KCNQ2 G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as keystone of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path. Co-expression with G256W dominantly suppressed conduction by wild-type subunits in heterologous cells. Ezogabine partly reversed this suppression. G256W/+ mice have epilepsy leading to premature deaths. Hippocampal CA1 pyramidal cells from G256W/+ brain slices showed hyperexcitability. G256W/+ pyramidal cell KCNQ2 and KCNQ3 immunolabeling was significantly shifted from axon initial segments to neuronal somata. Despite normal mRNA levels, G256W/+ mouse KCNQ2 protein levels were reduced by about 50%. Our findings indicate that G256W pathogenicity results from multiplicative effects, including reductions in intrinsic conduction, subcellular targeting, and protein stability. These studies reveal pore "turret arch" bonding as a KCNQ structural novelty and introduce a valid animal model of KCNQ2 encephalopathy. Our results, spanning structure to behavior, may be broadly applicable because the majority of KCNQ2 encephalopathy patients share variants near the selectivity filter.

2.
Neurotherapeutics ; 21(1): e00296, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241158

RESUMO

While loss-of-function (LoF) variants in KCNQ2 are associated with a spectrum of neonatal-onset epilepsies, gain-of-function (GoF) variants cause a more complex phenotype that precludes neonatal-onset epilepsy. In the present work, the clinical features of three patients carrying a de novo KCNQ2 Y141N (n â€‹= â€‹1) or G239S variant (n â€‹= â€‹2) respectively, are described. All three patients had a mild global developmental delay, with prominent language deficits, and strong activation of interictal epileptic activity during sleep. Epileptic seizures were not reported. The absence of neonatal seizures suggested a GoF effect and prompted functional testing of the variants. In vitro whole-cell patch-clamp electrophysiological experiments in Chinese Hamster Ovary cells transiently-transfected with the cDNAs encoding Kv7.2 subunits carrying the Y141N or G239S variants in homomeric or heteromeric configurations with Kv7.2 subunits, revealed that currents from channels incorporating mutant subunits displayed increased current densities and hyperpolarizing shifts of about 10 â€‹mV in activation gating; both these functional features are consistent with an in vitro GoF phenotype. The antidepressant drug amitriptyline induced a reversible and concentration-dependent inhibition of current carried by Kv7.2 Y141N and G239S mutant channels. Based on in vitro results, amitriptyline was prescribed in one patient (G239S), prompting a significant improvement in motor, verbal, social, sensory and adaptive behavior skillsduring the two-year-treatment period. Thus, our results suggest that KCNQ2 GoF variants Y141N and G239S cause a mild DD with prominent language deficits in the absence of neonatal seizures and that treatment with the Kv7 channel blocker amitriptyline might represent a potential targeted treatment for patients with KCNQ2 GoF variants.


Assuntos
Amitriptilina , Epilepsia , Recém-Nascido , Cricetinae , Animais , Humanos , Cricetulus , Células CHO , Mutação com Ganho de Função , Fenótipo , Convulsões , Canal de Potássio KCNQ2/genética
3.
Ann Clin Transl Neurol ; 10(4): 656-663, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36793218

RESUMO

Precision medicine for Mendelian epilepsy is rapidly developing. We describe an early infant with severely pharmacoresistant multifocal epilepsy. Exome sequencing revealed the de novo variant p.(Leu296Phe) in the gene KCNA1, encoding the voltage-gated K+ channel subunit KV 1.1. So far, loss-of-function variants in KCNA1 have been associated with episodic ataxia type 1 or epilepsy. Functional studies of the mutated subunit in oocytes revealed a gain-of-function caused by a hyperpolarizing shift of voltage dependence. Leu296Phe channels are sensitive to block by 4-aminopyridine. Clinical use of 4-aminopyridine was associated with reduced seizure burden, enabled simplification of co-medication and prevented rehospitalization.


Assuntos
Epilepsia Generalizada , Epilepsia , Humanos , 4-Aminopiridina/farmacologia , 4-Aminopiridina/uso terapêutico , Mutação com Ganho de Função , Mutação , Epilepsia/tratamento farmacológico , Epilepsia/genética , Canal de Potássio Kv1.1/genética
4.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36292983

RESUMO

We describe genetic and molecular-level functional alterations in the α4ß2 neuronal nicotinic acetylcholine receptor (nAChR) from a patient with sleep-related hyperkinetic epilepsy and a family history of epilepsy. Genetic sequencing revealed a heterozygous variant c.851C>G in the CHRNA4 gene encoding the α4 subunit, resulting in the missense mutation p.Ser284Trp. Patch clamp recordings from genetically engineered nAChRs incorporating the α4-Ser284Trp subunit revealed aberrant channel openings in the absence of agonist and markedly prolonged openings in its presence. Measurements of single channel current amplitude distinguished two pentameric stoichiometries of the variant nAChR containing either two or three copies of the α4-Ser284Trp subunit, each exhibiting aberrant spontaneous and prolonged agonist-elicited channel openings. The α4-Ser284 residue is highly conserved and located within the M2 transmembrane α-helix that lines the ion channel. When mapped onto the receptor's three-dimensional structure, the larger Trp substitution sterically clashes with the M2 α-helix from the neighboring subunit, promoting expansion of the pore and stabilizing the open relative to the closed conformation of the channel. Together, the clinical, genetic, functional, and structural observations demonstrate that α4-Ser284Trp enhances channel opening, predicting increased membrane excitability and a pathogenic seizure phenotype.


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Membrana Celular , Sono , Oócitos/fisiologia
5.
EBioMedicine ; 81: 104130, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35780567

RESUMO

BACKGROUND: Prior studies have revealed remarkable phenotypic heterogeneity in KCNQ2-related disorders, correlated with effects on biophysical features of heterologously expressed channels. Here, we assessed phenotypes and functional properties associated with KCNQ2 missense variants R144W, R144Q, and R144G. We also explored in vitro blockade of channels carrying R144Q mutant subunits by amitriptyline. METHODS: Patients were identified using the RIKEE database and through clinical collaborators. Phenotypes were collected by a standardized questionnaire. Functional and pharmacological properties of variant subunits were analyzed by whole-cell patch-clamp recordings. FINDINGS: Detailed clinical information on fifteen patients (14 novel and 1 previously published) was analyzed. All patients had developmental delay with prominent language impairment. R144Q patients were more severely affected than R144W patients. Infantile to childhood onset epilepsy occurred in 40%, while 67% of sleep-EEGs showed sleep-activated epileptiform activity. Ten patients (67%) showed autistic features. Activation gating of homomeric Kv7.2 R144W/Q/G channels was left-shifted, suggesting gain-of-function effects. Amitriptyline blocked channels containing Kv7.2 and Kv7.2 R144Q subunits. INTERPRETATION: Patients carrying KCNQ2 R144 gain-of-function variants have developmental delay with prominent language impairment, autistic features, often accompanied by infantile- to childhood-onset epilepsy and EEG sleep-activated epileptiform activity. The absence of neonatal seizures is a robust and important clinical differentiator between KCNQ2 gain-of-function and loss-of-function variants. The Kv7.2/7.3 channel blocker amitriptyline might represent a targeted treatment. FUNDING: Supported by FWO, GSKE, KCNQ2-Cure, Jack Pribaz Foundation, European Joint Programme on Rare Disease 2020, the Italian Ministry for University and Research, the Italian Ministry of Health, the European Commission, the University of Antwerp, NINDS, and Chalk Family Foundation.


Assuntos
Transtorno Autístico , Epilepsia , Doenças do Recém-Nascido , Transtornos do Desenvolvimento da Linguagem , Amitriptilina , Mutação com Ganho de Função , Humanos , Recém-Nascido , Canal de Potássio KCNQ2/genética , Convulsões
6.
Exp Neurol ; 355: 114141, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691372

RESUMO

Anti-seizure drug (ASD) targets are widely expressed in both excitatory and inhibitory neurons. It remains unknown if the action of an ASD upon inhibitory neurons could counteract its beneficial effects on excitatory neurons (or vice versa), thereby reducing the efficacy of the ASD. Here, we examine whether the efficacy of the ASD retigabine (RTG) is altered after removal of the Kv7 potassium channel subunit KCNQ2, one of its drug targets, from parvalbumin-expressing interneurons (PV-INs). Parvalbumin-Cre (PV-Cre) mice were crossed with Kcnq2-floxed (Kcnq2fl/fl) mice to conditionally delete Kcnq2 from PV-INs. In these conditional knockout mice (cKO, PV-Kcnq2fl/fl), RTG (10 mg/kg, i.p.) significantly delayed the onset of either picrotoxin (PTX, 10 mg/kg, i.p)- or kainic acid (KA, 30 mg/kg, i.p.)-induced convulsive seizures compared to vehicle, while RTG was not effective in wild-type littermates (WT). Immunostaining for KCNQ2 and KCNQ3 revealed that both subunits were enriched at axon initial segments (AISs) of hippocampal CA1 PV-INs, and their specific expression was selectively abolished in cKO mice. Accordingly, the M-currents recorded from CA1 PV-INs and their sensitivity to RTG were significantly reduced in cKO mice. While the ability of RTG to suppress CA1 excitatory neurons in hippocampal slices was unchanged in cKO mice, its suppressive effect on the spike activity of CA1 PV-INs was significantly reduced compared with WT mice. In addition, the RTG-induced suppression on intrinsic membrane excitability of PV-INs in WT mice was significantly reduced in cKO mice. These findings suggest that preventing RTG from suppressing PV-INs improves its anticonvulsant effect.


Assuntos
Parvalbuminas , Fenilenodiaminas , Animais , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Interneurônios/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico
7.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35104249

RESUMO

Hundreds of genetic variants in KCNQ2 encoding the voltage-gated potassium channel KV7.2 are associated with early onset epilepsy and/or developmental disability, but the functional consequences of most variants are unknown. Absent functional annotation for KCNQ2 variants hinders identification of individuals who may benefit from emerging precision therapies. We employed automated patch clamp recordings to assess at, to our knowledge, an unprecedented scale the functional and pharmacological properties of 79 missense and 2 inframe deletion KCNQ2 variants. Among the variants we studied were 18 known pathogenic variants, 24 mostly rare population variants, and 39 disease-associated variants with unclear functional effects. We analyzed electrophysiological data recorded from 9,480 cells. The functional properties of 18 known pathogenic variants largely matched previously published results and validated automated patch clamp for this purpose. Unlike rare population variants, most disease-associated KCNQ2 variants exhibited prominent loss-of-function with dominant-negative effects, providing strong evidence in support of pathogenicity. All variants responded to retigabine, although there were substantial differences in maximal responses. Our study demonstrated that dominant-negative loss-of-function is a common mechanism associated with missense KCNQ2 variants. Importantly, we observed genotype-dependent differences in the response of KCNQ2 variants to retigabine, a proposed precision therapy for KCNQ2 developmental and epileptic encephalopathy.


Assuntos
Epilepsia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Canal de Potássio KCNQ2/genética , Mutação de Sentido Incorreto
8.
Neuron ; 110(2): 178-180, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35051360

RESUMO

In this issue of Neuron, structures by Zheng et al. (2021) provide a newly comprehensive view of KCNQ channel interaction with phosphatidyl inositol 4,5-bisphosphate (PIP2), yielding insights for modulatory mechanisms of channels implicated in deafness, epilepsy, autism, and intellectual disability.


Assuntos
Epilepsia , Fosfatidilinositol 4,5-Difosfato , Epilepsia/genética , Humanos , Ativação do Canal Iônico/fisiologia , Neurônios
9.
Front Physiol ; 11: 1144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041849

RESUMO

Heterozygous missense variants in KCNQ2, which encodes the potassium channel subunit Kv7.2, are among the most common genetic causes of severe neonatal-onset epileptic encephalopathy. Because about 20% of known severe Kv7.2 missense changes lie within the intracellular C-terminal region, improving understanding of the underlying pathogenic mechanisms is important. We analyzed the basis for the severe phenotypes of Kv7.2 A337T and A337G, variants in the C-terminal's calmodulin (CaM)-binding Helix A. When expressed heterologously in mammalian cells, alone or in combination with wild type Kv7.2 or with wild type Kv7.2 and Kv7.3, both variants strongly suppressed channel currents. A337T channels expressed alone exhibited significantly reduced protein half-life and surface trafficking and co-immunoprecipitated less CaM. For both variants, increasing cellular phosphatidylinositol 4,5-bisphosphate (PIP2) by overexpression of PI(4)P5-kinase restored current densities. For both variants, the fraction of current suppressed by activation of M1 muscarinic receptors with 10 µM oxotremorine methiodide, which depletes PIP2, was less than for controls. During voltage-sensitive phosphatase-induced transient PIP2 depletion and resynthesize, potassium current inhibition and recovery kinetics were both markedly slowed. These results suggest that these variants may reduce currents by a mechanism not previously described: slowing of PIP2 migration between the bulk membrane and binding sites mediating channel electromechanical coupling. A novel Kv7.2/3-selective opener, SF0034, rescued current amplitudes. Our findings show that these two Helix A variants suppress channel current density strongly, consistent with their severe heterozygous phenotypes, implicate impairment of CaM and PIP2 regulation in KCNQ2 encephalopathy pathogenesis, and highlight the potential usefulness of selective Kv7 openers for this distinctive pathogenic mechanism and patient subgroup.

10.
Front Physiol ; 11: 1040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013448

RESUMO

Pathogenic variants in KCNQ2 and KCNQ3, paralogous genes encoding Kv7.2 and Kv7.3 voltage-gated K+ channel subunits, are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical phenotypes ranging from benign familial neonatal epilepsy (BFNE) to early-onset developmental and epileptic encephalopathy (DEE). KCNQ2 variants account for the majority of pedigrees with BFNE and KCNQ3 variants are responsible for a much smaller subgroup, but the reasons for this imbalance remain unclear. Analysis of additional pedigrees is needed to further clarify the nature of this genetic heterogeneity and to improve prediction of pathogenicity for novel variants. We identified a BFNE family with two siblings and a parent affected. Exome sequencing on samples from both parents and siblings revealed a novel KCNQ3 variant (c.719T>G; p.M240R), segregating in the three affected individuals. The M240 residue is conserved among human Kv7.2-5 and lies between the two arginines (R5 and R6) closest to the intracellular side of the voltage-sensing S4 transmembrane segment. Whole cell patch-clamp recordings in Chinese hamster ovary (CHO) cells revealed that homomeric Kv7.3 M240R channels were not functional, whereas heteromeric channels incorporating Kv7.3 M240R mutant subunits with Kv7.2 and Kv7.3 displayed a depolarizing shift of about 10 mV in activation gating. Molecular modeling results suggested that the M240R substitution preferentially stabilized the resting state and possibly destabilized the activated state of the Kv7.3 subunits, a result consistent with functional data. Exposure to ß-hydroxybutyrate (BHB), a ketone body generated during the ketogenic diet (KD), reversed channel dysfunction induced by the M240R variant. In conclusion, we describe the first missense loss-of-function (LoF) pathogenic variant within the S4 segment of Kv7.3 identified in patients with BFNE. Studied under conditions mimicking heterozygosity, the M240R variant mainly affects the voltage sensitivity, in contrast to previously analyzed BFNE Kv7.3 variants that reduce current density. Our pharmacological results provide a rationale for the use of KD in patients carrying LoF variants in Kv7.2 or Kv7.3 subunits.

11.
Epilepsia ; 60(9): 1870-1880, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31418850

RESUMO

OBJECTIVE: Pathogenic variants of KCNQ2, which encode a potassium channel subunit, cause either benign (familial) neonatal epilepsy-B(F)NE)-or KCNQ2 encephalopathy (KCNQ2 DEE). We examined the characteristics of KCNQ2 variants. METHODS: KCNQ2 pathogenic variants were collected from in-house data and two large disease databases with their clinical phenotypes. Nonpathogenic KCNQ2 variants were collected from the Genome Aggregation Database (gnomAD). Pathogenicity of all variants was reevaluated with clinical information to exclude irrelevant variants. The cumulative distribution plots of B(F)NE, KCNQ2 DEE, and gnomAD KCNQ2 variants were compared. Several algorithms predicting genetic variant pathogenicity were evaluated. RESULTS: A total of 259 individuals or pedigrees with 216 different pathogenic KCNQ2 variants and 2967 individuals with 247 different nonpathogenic variants were deemed eligible for the study. Compared to the distribution of nonpathogenic variants, B(F)NE and KCNQ2 DEE missense variants occurred in five and three specific KCNQ2 regions, respectively. Comparison between B(F)NE and KCNQ2 DEE sets showed that B(F)NE missense variants frequently localized to the intracellular domain between S2 and S3, whereas those of KCNQ2 DEE were more frequent in S6, and its adjacent pore domain, as well as in the intracellular domain between S6 and helix A. The scores of Protein Variation Effect Analyzer (PROVEAN) and Percent Accepted Mutation (PAM) 30 prediction algorithms were associated with phenotypes of the variant loci. SIGNIFICANCE: Missense variants in the intracellular domain between S2 and S3 are likely to cause B(F)NE, whereas those in S6 and its adjacent regions are more likely to cause KCNQ2 DEE. With such regional specificities of variants, PAM30 is a helpful tool to examine the possibility that a novel KCNQ2 variant is a B(F)NE or KCNQ2 DEE variant in genetic analysis.


Assuntos
Encefalopatias/genética , Epilepsia Neonatal Benigna/genética , Canal de Potássio KCNQ2/genética , Espasmos Infantis/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo
12.
Int J Mol Sci ; 20(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295832

RESUMO

Kv7.2 subunits encoded by the KCNQ2 gene provide a major contribution to the M-current (IKM), a voltage-gated K+ current crucially involved in the regulation of neuronal excitability. Heterozygous missense variants in Kv7.2 are responsible for epileptic diseases characterized by highly heterogeneous genetic transmission and clinical severity, ranging from autosomal-dominant Benign Familial Neonatal Seizures (BFNS) to sporadic cases of severe epileptic and developmental encephalopathy (DEE). Here, we describe a patient with neonatal onset DEE, carrying a previously undescribed heterozygous KCNQ2 c.418G > C, p.Glu140Gln (E140Q) variant. Patch-clamp recordings in CHO cells expressing the E140Q mutation reveal dramatic loss of function (LoF) effects. Multistate structural modelling suggested that the E140Q substitution impeded an intrasubunit electrostatic interaction occurring between the E140 side chain in S2 and the arginine at position 210 in S4 (R210); this interaction is critically involved in stabilizing the activated configuration of the voltage-sensing domain (VSD) of Kv7.2. Functional results from coupled charge reversal or disulfide trapping experiments supported such a hypothesis. Finally, retigabine restored mutation-induced functional changes, reinforcing the rationale for the clinical use of Kv7 activators as personalized therapy for DEE-affected patients carrying Kv7.2 LoF mutations.


Assuntos
Encefalopatias/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Variação Genética , Canal de Potássio KCNQ2/genética , Domínios e Motivos de Interação entre Proteínas/genética , Espasmos Infantis/genética , Substituição de Aminoácidos , Biomarcadores , Encefalopatias/diagnóstico , Encefalopatias/terapia , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/terapia , Eletroencefalografia , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Canal de Potássio KCNQ2/química , Mutação com Perda de Função , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Neuroimagem , Conformação Proteica , Espasmos Infantis/diagnóstico , Espasmos Infantis/terapia , Relação Estrutura-Atividade , Avaliação de Sintomas
13.
Ann Neurol ; 86(2): 181-192, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31177578

RESUMO

OBJECTIVE: Recent reports have described single individuals with neurodevelopmental disability (NDD) harboring heterozygous KCNQ3 de novo variants (DNVs). We sought to assess whether pathogenic variants in KCNQ3 cause NDD and to elucidate the associated phenotype and molecular mechanisms. METHODS: Patients with NDD and KCNQ3 DNVs were identified through an international collaboration. Phenotypes were characterized by clinical assessment, review of charts, electroencephalographic (EEG) recordings, and parental interview. Functional consequences of variants were analyzed in vitro by patch-clamp recording. RESULTS: Eleven patients were assessed. They had recurrent heterozygous DNVs in KCNQ3 affecting residues R230 (R230C, R230H, R230S) and R227 (R227Q). All patients exhibited global developmental delay within the first 2 years of life. Most (8/11, 73%) were nonverbal or had a few words only. All patients had autistic features, and autism spectrum disorder (ASD) was diagnosed in 5 of 11 (45%). EEGs performed before 10 years of age revealed frequent sleep-activated multifocal epileptiform discharges in 8 of 11 (73%). For 6 of 9 (67%) recorded between 1.5 and 6 years of age, spikes became near-continuous during sleep. Interestingly, most patients (9/11, 82%) did not have seizures, and no patient had seizures in the neonatal period. Voltage-clamp recordings of the mutant KCNQ3 channels revealed gain-of-function (GoF) effects. INTERPRETATION: Specific GoF variants in KCNQ3 cause NDD, ASD, and abundant sleep-activated spikes. This new phenotype contrasts both with self-limited neonatal epilepsy due to KCNQ3 partial loss of function, and with the neonatal or infantile onset epileptic encephalopathies due to KCNQ2 GoF. ANN NEUROL 2019;86:181-192.


Assuntos
Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Mutação com Ganho de Função/genética , Canal de Potássio KCNQ3/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Variação Genética/genética , Humanos , Canal de Potássio KCNQ3/química , Masculino , Estrutura Secundária de Proteína , Adulto Jovem
14.
Epilepsia ; 58(3): 436-445, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28139826

RESUMO

OBJECTIVE: To analyze whether KCNQ2 R201C and R201H variants, which show atypical gain-of-function electrophysiologic properties in vitro, have a distinct clinical presentation and outcome. METHODS: Ten children with heterozygous, de novo KCNQ2 R201C or R201H variants were identified worldwide, using an institutional review board (IRB)-approved KCNQ2 patient registry and database. We reviewed medical records and, where possible, interviewed parents and treating physicians using a structured, detailed phenotype inventory focusing on the neonatal presentation and subsequent course. RESULTS: Nine patients had encephalopathy from birth and presented with prominent startle-like myoclonus, which could be triggered by sound or touch. In seven patients, electroencephalography (EEG) was performed in the neonatal period and showed a burst-suppression pattern. However, myoclonus did not have an EEG correlate. In many patients the paroxysmal movements were misdiagnosed as seizures. Seven patients developed epileptic spasms in infancy. In all patients, EEG showed a slow background and multifocal epileptiform discharges later in life. Other prominent features included respiratory dysfunction (perinatal respiratory failure and/or chronic hypoventilation), hypomyelination, reduced brain volume, and profound developmental delay. One patient had a later onset, and sequencing indicated that a low abundance (~20%) R201C variant had arisen by postzygotic mosaicism. SIGNIFICANCE: Heterozygous KCNQ2 R201C and R201H gain-of-function variants present with profound neonatal encephalopathy in the absence of neonatal seizures. Neonates present with nonepileptic myoclonus that is often misdiagnosed and treated as seizures. Prognosis is poor. This clinical presentation is distinct from the phenotype associated with loss-of-function variants, supporting the value of in vitro functional screening. These findings suggest that gain-of-function and loss-of-function variants need different targeted therapeutic approaches.


Assuntos
Canal de Potássio KCNQ2/genética , Mioclonia/genética , Polimorfismo de Nucleotídeo Único/genética , Espasmos Infantis/genética , Anticonvulsivantes/uso terapêutico , Arginina/genética , Pré-Escolar , Cisteína/genética , Eletroencefalografia , Feminino , Histidina/genética , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Mioclonia/diagnóstico por imagem , Mioclonia/tratamento farmacológico , Mioclonia/fisiopatologia , Fenótipo , Sistema de Registros , Transtornos Respiratórios/etiologia , Transtornos Respiratórios/genética
15.
Epilepsia ; 58(1): e10-e15, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27861786

RESUMO

Variants in KCNQ2 encoding for Kv 7.2 neuronal K+ channel subunits lead to a spectrum of neonatal-onset epilepsies, ranging from self-limiting forms to severe epileptic encephalopathy. Most KCNQ2 pathogenic variants cause loss-of-function, whereas few increase channel activity (gain-of-function). We herein provide evidence for a new phenotypic and functional profile in KCNQ2-related epilepsy: infantile spasms without prior neonatal seizures associated with a gain-of-function gene variant. With use of an international registry, we identified four unrelated patients with the same de novo heterozygous KCNQ2 c.593G>A, p.Arg198Gln (R198Q) variant. All were born at term and discharged home without seizures or concern of encephalopathy, but developed infantile spasms with hypsarrhythmia (or modified hypsarrhythmia) between the ages of 4 and 6 months. At last follow-up (ages 3-11 years), all patients were seizure-free and had severe developmental delay. In vitro experiments showed that Kv7.2 R198Q subunits shifted current activation gating to hyperpolarized potentials, indicative of gain-of-function; in neurons, Kv 7.2 and Kv 7.2 R198Q subunits similarly populated the axon initial segment, suggesting that gating changes rather than altered subcellular distribution contribute to disease molecular pathogenesis. We conclude that KCNQ2 R198Q is a model for a new subclass of KCNQ2 variants causing infantile spasms and encephalopathy, without preceding neonatal seizures. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Assuntos
Encefalopatias/genética , Canal de Potássio KCNQ2/genética , Mutação/genética , Espasmos Infantis/genética , Animais , Arginina/genética , Células CHO , Células Cultivadas , Criança , Pré-Escolar , Cricetulus , Glutamina/genética , Hipocampo/citologia , Humanos , Lactente , Estudos Longitudinais , Potenciais da Membrana/genética , Modelos Moleculares , Neurônios/fisiologia , Ratos , Transfecção
16.
Neurol Genet ; 2(5): e96, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27602407

RESUMO

OBJECTIVE: To advance the understanding of KCNQ2 encephalopathy genotype-phenotype relationships and to begin to assess the potential of selective KCNQ channel openers as targeted treatments. METHODS: We retrospectively studied 23 patients with KCNQ2 encephalopathy, including 11 treated with ezogabine (EZO). We analyzed the genotype-phenotype relationships in these and 70 previously described patients. RESULTS: The mean seizure onset age was 1.8 ± 1.6 (SD) days. Of the 20 EEGs obtained within a week of birth, 11 showed burst suppression. When new seizure types appeared in infancy (15 patients), the most common were epileptic spasms (n = 8). At last follow-up, seizures persisted in 9 patients. Development was delayed in all, severely in 14. The KCNQ2 variants identified introduced amino acid missense changes or, in one instance, a single residue deletion. They were clustered in 4 protein subdomains predicted to poison tetrameric channel functions. EZO use (assessed by the treating physicians and parents) was associated with improvement in seizures and/or development in 3 of the 4 treated before 6 months of age, and 2 of the 7 treated later; no serious side effects were observed. CONCLUSIONS: KCNQ2 variants cause neonatal-onset epileptic encephalopathy of widely varying severity. Pathogenic variants in epileptic encephalopathy are clustered in "hot spots" known to be critical for channel activity. For variants causing KCNQ2 channel loss of function, EZO appeared well tolerated and potentially beneficial against refractory seizures when started early. Larger, prospective studies are needed to enable better definition of prognostic categories and more robust testing of novel interventions. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that EZO is effective for refractory seizures in patients with epilepsy due to KCNQ2 encephalopathy.

17.
J Biol Chem ; 290(27): 16619-32, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25998125

RESUMO

In many mammalian neurons, fidelity and robustness of action potential generation and conduction depends on the co-localization of voltage-gated sodium (Nav) and KCNQ2/3 potassium channel conductance at the distal axon initial segment (AIS) and nodes of Ranvier in a ratio of ∼40 to 1. Analogous "anchor" peptides within intracellular domains of vertebrate KCNQ2, KCNQ3, and Nav channel α-subunits bind Ankyrin-G (AnkG), thereby mediating concentration of those channels at AISs and nodes of Ranvier. Here, we show that the channel anchors bind at overlapping but distinct sites near the AnkG N terminus. In pulldown assays, the rank order of AnkG binding strength is Nav1.2 ≫ KCNQ3 > KCNQ2. Phosphorylation of KCNQ2 and KCNQ3 anchor domains by protein kinase CK2 (CK2) augments binding, as previously shown for Nav1.2. An AnkG fragment comprising ankyrin repeats 1 through 7 (R1-7) binds phosphorylated Nav or KCNQ anchors robustly. However, mutational analysis of R1-7 reveals differences in binding mechanisms. A smaller fragment, R1-6, exhibits much-diminished KCNQ3 binding but binds Nav1.2 well. Two lysine residues at the tip of repeat 2-3 ß-hairpin (residues 105-106) are critical for Nav1.2 but not KCNQ3 channel binding. Another dibasic motif (residues Arg-47, Arg-50) in the repeat 1 front α-helix is crucial for KCNQ2/3 but not Nav1.2 binding. AnkG's alternatively spliced N terminus selectively gates access to those sites, blocking KCNQ but not Nav channel binding. These findings suggest that the 40:1 Nav:KCNQ channel conductance ratio at the distal AIS and nodes arises from the relative strength of binding to AnkG.


Assuntos
Anquirinas/química , Anquirinas/metabolismo , Caseína Quinase II/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Sequência de Aminoácidos , Anquirinas/genética , Axônios/química , Axônios/metabolismo , Caseína Quinase II/química , Caseína Quinase II/genética , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Neurônios/química , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
18.
PLoS One ; 10(3): e0123436, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798587

RESUMO

The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons.


Assuntos
Canais Iônicos/metabolismo , Crista Neural/metabolismo , 4-Aminopiridina/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Regulação para Baixo , Embrião de Mamíferos/citologia , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Sistema Nervoso Entérico/metabolismo , Canais Iônicos/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Crista Neural/citologia , Neuritos/fisiologia , Neurogênese/efeitos dos fármacos , Tetraetilamônio/farmacologia , Regulação para Cima
19.
Neuron ; 85(2): 346-63, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25578363

RESUMO

Acetylcholine critically influences hippocampal-dependent learning. Cholinergic fibers innervate hippocampal neuron axons, dendrites, and somata. The effects of acetylcholine on axonal information processing, though, remain unknown. By stimulating cholinergic fibers and making electrophysiological recordings from hippocampal dentate gyrus granule cells, we show that synaptically released acetylcholine preferentially lowered the action potential threshold, enhancing intrinsic excitability and synaptic potential-spike coupling. These effects persisted for at least 30 min after the stimulation paradigm and were due to muscarinic receptor activation. This caused sustained elevation of axonal intracellular Ca(2+) via T-type Ca(2+) channels, as indicated by two-photon imaging. The enhanced Ca(2+) levels inhibited an axonal KV7/M current, decreasing the spike threshold. In support, immunohistochemistry revealed muscarinic M1 receptor, CaV3.2, and KV7.2/7.3 subunit localization in granule cell axons. Since alterations in axonal signaling affect neuronal firing patterns and neurotransmitter release, this is an unreported cellular mechanism by which acetylcholine might, at least partly, enhance cognitive processing.


Assuntos
Acetilcolina/metabolismo , Potenciais de Ação/fisiologia , Axônios/metabolismo , Fibras Colinérgicas/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Neurônios Aferentes/metabolismo , Receptor Muscarínico M1/metabolismo , Potenciais Sinápticos/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo T/metabolismo , Giro Denteado/citologia , Giro Denteado/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Camundongos , Plasticidade Neuronal , Neurônios/metabolismo , Potássio/metabolismo , Receptores Muscarínicos/metabolismo , Transmissão Sináptica
20.
Nat Neurosci ; 17(12): 1673-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25362471

RESUMO

Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, and they are essential for rapid saltatory conduction and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na(+) channel clustering in neurons and are important for membrane domain establishment and maintenance in many cell types. Here we show that ankyrin-B, expressed by Schwann cells, and ankyrin-G, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing CNS.


Assuntos
Anquirinas/biossíntese , Axônios/metabolismo , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Animais , Anquirinas/análise , Anquirinas/genética , Axônios/química , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/química , Oligodendroglia/química , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...